

ESTUDIO DE DISEÑO DEL ESQUEMA DE DESCONEXION DE CARGA AUTOMATICA POR BAJO VOLTAJE

AÑO 2008

DIVISIÓN DE CONTROL DE ENERGÍA

Elaborado por: Ing. Mauricio Contreras Arias

Revisado por:

Ing. Hugo E. Hernández Ing. Juan José Orellana

OCTUBRE DE 2008

INDICE

	ANTECEDENTES	<u>5</u>
<u>2.</u>	OBJETIVO	<u>6</u>
<u>3.</u>	CRITERIOS DE SEGURIDAD Y CALIDAD EMPLEADOS	<u>6</u>
<u>4.</u>	CASOS BASE: ESCENARIOS DE DEMANDA Y GENERACIÓN	7
<u>5.</u>	HERRAMIENTAS DE ANÁLISIS Y BASE DE DATOS	<u> 10</u>
<u>6.</u>	COMPONENTES DE SISTEMAS DE POTENCIA Y MODELOS	11
 6.1. 6.2. 6.2. 6.3. 6.4. 	 BANCO DE CAPACITORES OPERADOS MANUALMENTE	11 11 11 12 14 14
<u>7.</u>	ESCENARIOS DE INESTABILIDAD DE VOLTAJE	<u>16</u>
8.		
	METODOLOGIA	<u> 16</u>
8.1. 8.2.	METODOLOGIA Selección de casos base Identificación de áreas locales	<u>16</u> 18 18
8.1. 8.2. 8.3.	METODOLOGIA SELECCIÓN DE CASOS BASE IDENTIFICACIÓN DE ÁREAS LOCALES ANÁLISIS DE CONTINGENCIAS Y SELECCIÓN DE ESCENARIOS SELECCIÓN DE CONTINCENCIAS CRÍTICAS	16 18 18 19 20
8.1. 8.2. 8.3. 8.4. 8.4	METODOLOGIA SELECCIÓN DE CASOS BASE IDENTIFICACIÓN DE ÁREAS LOCALES ANÁLISIS DE CONTINGENCIAS Y SELECCIÓN DE ESCENARIOS SELECCIÓN DE CONTINGENCIAS CRÍTICAS CÁLCULO DE LA RESERVA DE POTENCIA REACTIVA	16 18 18 19 20 20
8.1. 8.2. 8.3. 8.4. 8.4. 8.4. 8.4.	METODOLOGIA SELECCIÓN DE CASOS BASE IDENTIFICACIÓN DE ÁREAS LOCALES ANÁLISIS DE CONTINGENCIAS Y SELECCIÓN DE ESCENARIOS SELECCIÓN DE CONTINGENCIAS CRÍTICAS 1. CÁLCULO DE LA RESERVA DE POTENCIA REACTIVA	16 18 19 20 20 20
8.1. 8.2. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4.	METODOLOGIA	16 18 18 19 20 20 20 20
8.1. 8.2. 8.3. 8.4. 8.4. 8.4. 8.5. 8.5.	METODOLOGIA	16 18 19 20 20 20 20 20 21
8.1. 8.2. 8.3. 8.4. 8.4. 8.4. 8.4. 8.5. 8.5. 8.5.	METODOLOGIA	16 18 18 20 20 20 20 20 21 21 22
8.1. 8.2. 8.3. 8.4. 8.4. 8.4. 8.5. 8.5. 8.5. 8.5.	METODOLOGIA	16 18 18 19 20 20 20 21 21 22 23
8.1. 8.2. 8.3. 8.4. 8.4. 8.4. 8.5. 8.5. 8.5. 8.5. 8.5. 8.5. 8.5.	METODOLOGIA	16 18 19 20 20 20 20 20 21 22 23 23
8.1. 8.2. 8.3. 8.4. 8.4. 8.5. 8.5. 8.5. 8.5. 8.5. 8.5. 8.5. 8.5. 8.6.	METODOLOGIA	16 18 18 19 20 20 20 20 21 22 23 23 24
8.1. 8.2. 8.3. 8.4. 8.4. 8.4. 8.5. 8.5. 8.5. 8.5. 8.5. 8.6. 8.7.	METODOLOGIA	16 18 18 19 20 20 20 20 21 22 23 23 24 24
8.1. 8.2. 8.3. 8.4. 8.4. 8.4. 8.4. 8.5. 8.5. 8.5. 8.5	METODOLOGIA	16 18 18 19 20 20 20 20 21 22 23 23 24 24 25
8.1. 8.2. 8.3. 8.4. 8.4. 8.4. 8.5. 8.5. 8.5. 8.5. 8.5	METODOLOGIA . SELECCIÓN DE CASOS BASE . IDENTIFICACIÓN DE ÁREAS LOCALES . ANÁLISIS DE CONTINGENCIAS Y SELECCIÓN DE ESCENARIOS . SELECCIÓN DE CONTINGENCIAS CRÍTICAS . SELECCIÓN DE CONTINGENCIAS CRÍTICAS . SELECCIÓN DE CONTINGENCIAS CRÍTICAS . CÁLCULO DE LA RESERVA DE POTENCIA REACTIVA . CÁLCULO DEL MARGEN DE POTENCIA REACTIVA . CÁLCULO DEL MARGEN DE POTENCIA REACTIVA . ANÁLISIS DE LAS CURVAS P-V . NUNTO DE COLAPSO . BANDA DE DISPARO Y VOLTAJE MÍNIMO DE OPERACIÓN .3 PUNTO DE RECUPERACIÓN .4 MÍNIMA CARGA DE CORTE . DETERMINACIÓN DE PARÁMETROS DEL EDCBV . DETERMINACIÓN DEL MÍNIMO TIEMPO DE RETARDO . EVALUACIÓN DINÁMICA Y VERIFICACIÓN DE PARÁMETROS . RESULTADOS	16 18 18 19 20 20 20 20 20 20 20 21 22 23 24 24 25

9.1.1. Demanda máxima	27
9.1.2. Demanda media	
9.2. ANÁLISIS DE CONTINGENCIAS Y SELECCIÓN DE ESCENARIOS	
9.2.1. Demanda máxima	
9.2.2. Demanda media	
9.3. SELECCIÓN DE CONTINGENCIAS CRÍTICAS	
9.3.1. Demanda máxima	
9.3.2. Demanda media	
9.4. ANÁLISIS DE LAS CURVAS P-V	
9.5. DETERMINACIÓN DE PARÁMETROS DEL EDCBV	
9.6. DETERMINACIÓN DEL MÍNIMO TIEMPO DE RETARDO	
9.7. EVALUACIÓN DINÁMICA Y VERIFICACIÓN DE PARÁMETROS	
9.7.1. CONTINGENCIAS SIMPLES	41
9.7.2. CONTINGENCIAS DOBLES	41
9.7.3. CONTINGENCIAS CON COLAPSOS DE VOLTAJE	
10. CONSIDERACIONES DE IMPLEMENTACION DEL EDCBV	
11. CONCLUSIONES	
12. REFERENCIAS Y BIBLIOGRAFIA	44

LISTA DE FIGURAS

Fig. 1 Método de combinación de componentes individuales	12
Fig. 2 Modelo CLOD	13
Fig. 3 Comparación de respuesta dinámica de voltaje entre modelos ZIP y CLOD	13
Fig. 4 Comparación de respuesta dinámica de voltaje entre modelos ZIP y CLOD	14
Fig. 5 Modelo MAXEX2 para limitadores de excitación del PSS/E	15
Fig. 6 Metodología del estudio de diseño del EDCBV	17
Fig. 7 Ejemplo de Curvas P-V calculados	21
Fig. 8 Parametrización de las curvas P-V	22
Fig. 9 Simulación dinámica para determinar el retardo de tiempo	25
Fig. 10 Respuesta de voltaje	26
Fig. 11 Respuesta de la potencia aparente	26
Fig. 12 Factores de efectividad para demanda máxima	28
Fig. 13 Factores de sensitividad para demanda máxima	28
Fig. 14 Factores de efectividad para demanda media	30
Fig. 15 Factores de sensitividad para demanda media	30

LISTA DE CUADROS

LISTA DE ANEXOS

- 1. Resultados para el escenario de demanad máxima de estación seca del mes de marzo......EDBV Anexo 1.doc
- 2. Resultados para el escenario de demanad media de estación seca del mes de marzo......EDBV Anexo 2.doc

1. ANTECEDENTES

En el año de 2006, se realizó el estudio de Evaluación de la Estabilidad de Voltaje del Sistema Eléctrico de El Salvador, en el cual se hicieron recomendaciones para mejorar el perfil de voltaje como "cambiar la posición de los taps de los transformadores elevadores de las plantas generadoras" y "para evitar problemas de alto voltaje en las barras de distribución con la configuración de los transformadores de generación sugerida, se recomendó poner en una posición arriba de su tap nominal a los transformadores de las subestaciones" de distribución.

Sin embargo, por la misma configuración del sistema de transmisión y por el aumento significativo de la demanda, se ha "provocado un mayor flujo de potencia por las líneas de transmisión trayendo consigo una degradación en el perfil de voltaje en 115kV, principalmente en horas de demanda media y máxima, a pesar de que los voltajes de distribución (23kV, 34.5kV y 46kV) se han mantenido dentro de niveles aceptables gracias a la regulación de los taps de transformadores, en su mayoría con cambiadores automáticos de taps bajo carga". Pero al considerar aquellas contingencias que van más allá de los criterios de análisis de fallas o por aumentos no anticipados de la carga en los puntos de entrega (transferencias de carga), es muy posible que se produzca por efecto cascada el colapso de voltaje.

Por otro lado, los proyectos de expansión de la generación se han atrasado, la capacidad de transferencia entre áreas se ha disminuido y el déficit de reserva de reactivos ha aumentado; el nivel de estrés del sistema de transmisión en condiciones de demanda máxima y media sobretodo y por la baja confiabilidad de algunos generadores térmicos, se está aumentando la posibilidad de un colapso de voltaje.

El fenómeno de colapso de voltaje de sistemas de transmisión, es el más común de las formas de "blackout" hoy en día [1]; con la interconexión de los sistemas de transmisión, el colapso por déficit de generación se ha vuelto poco probable ya que el Esquema de Desconexión de Carga por Baja Frecuencia, también es una forma común de protección.

La aplicación de un EDCBV al sistema eléctrico salvadoreño se ha propuesto en las recomendaciones de los estudios de Evaluación de Restricciones de Transmisión recientes, ha pesar que "en general, sobre la base del análisis de los resultados de las curvas P - V no se encuentran problemas de voltaje por el incremento en la demanda del sistema salvadoreño, teniéndose una cargabilidad de 1,020 MW para demanda máxima sin colapso de voltaje"[2].

Por las razones anteriores, y con el afán de incrementar la confiabilidad del sistema, contener el impacto de las fallas y facilitar la restauración del sistema ante contingencias, es que se está proponiendo la implementación del EDCBV que resulta del presente estudio; el cual, será utilizado para reducir el impacto de fallas severas de baja probabilidad y eventos no previstos.

2. <u>OBJETIVO</u>

De acuerdo al Reglamento de Operación vigente, en el artículo 13.3.5.2, se establece que:

"Los esquemas de desconexión de carga deben ser implementados en la red con el objeto de proteger la integridad del sistema cuando, por efecto de contingencias, las fuentes de frecuencia y voltaje no tengan la capacidad para mantener dichas variables dentro de los parámetros establecidos". Y en el artículo 13.3.5.5 se indica que "La UT coordinará con los operadores que correspondan los estudios necesarios para determinar los requerimientos para los esquemas de desconexión de carga, por baja frecuencia y por bajo voltaje, requeridos para que el sistema se opere de acuerdo a los criterios de calidad y seguridad vigentes..."

Por tanto, la Unidad de Transacciones, S.A. de C.V. presenta el siguiente estudio de Diseño del Esquema de Desconexión Automática de Carga por Bajo Voltaje Año 2008 (EDCBV), cuyo objetivo es diseñar un esquema de desconexión automático de carga descentralizado para proteger al sistema de colapsos de voltaje o en cascada para contingencias que van más allá de los criterios normales de fallas, utilizando las técnicas disponibles de simulación del sistema eléctrico de potencia.

3. <u>CRITERIOS DE SEGURIDAD Y CALIDAD EMPLEADOS</u>

Los criterios de seguridad y calidad utilizados en el presente estudio son los establecidos en el Reglamento de Operación de la UT, y de manera resumida se presentan a continuación:

- □ Banda normal de operación de la frecuencia: 59.88 a 60.12 Hz.
- □ Banda de operación de emergencia de la frecuencia: 59.40 a 60.60 Hz.
- □ Rango de operación normal de tensión: 95% a 105% de la tensión nominal.
- □ Rango de operación de emergencia: 90% a 110% de la tensión nominal.
- □ La potencia reactiva inyectada o absorbida en una unidad generadora operando en estado estable, deberá estar completamente disponible en un rango de variación del voltaje del 5% hacia arriba en el caso de sobreexcitación del generador o un 5% por debajo en el caso que la unidad está trabajando en condición de subexcitación.
- □ El factor de potencia en cualquier punto de retiro neto, en cualquier intervalo de Mercado, deberá ser igual o mayor a 0.950, atrasado o adelantado.
- □ Los tiempos de liberación de fallas de protecciones primarias no deberán exceder los siguientes límites:
 - 6 ciclos (100 ms) para unidades generadoras conectadas a 13.8 kV;
 - 9 ciclos (150 ms) para circuitos de 115 kV y 230 kV si actúan dentro del 80% de distancia para una falla en su propia línea y 23 ciclos (383 ms) si la falla está ubicada en el 20% restante de la misma línea.

- 24 ciclos (400 ms) para circuitos de voltajes menores a 115 kV, aplicable al dispositivo que protege el 80% del ramal principal directamente conectado al sistema de transmisión.
- □ Todas las líneas de la red deben estar cargadas debajo del 85% de la capacidad térmica nominal ("rate A" de la línea de transmisión usado en el modelo de simulación) en condiciones de operación normal.
- □ Todas las líneas de la red deben estar cargadas debajo del 100% de la capacidad térmica nominal ("rate B" de la línea de transmisión usado en el modelo de simulación) en condiciones de operación de emergencia.
- □ No existan oscilaciones de potencia arriba del 5% de la capacidad nominal de cada unidad entre los generadores sincronizados a la red.
- Todos los transformadores que entregan energía a un Distribuidor o un Usuario Final, no estén arriba del 90% de la capacidad nominal máxima del transformador para cualquier condición de demanda.

4. <u>CASOS BASE: ESCENARIOS DE DEMANDA Y GENERACIÓN</u>

A partir de los resultados del análisis de estabilidad de voltaje del Estudio de Evaluación de Restricciones de Transmisión 2008^{1} , se puede constatar que los escenarios de demanda del mes de marzo indican menor reserva de reactivos que los presentados en los escenarios de demanda del mes de diciembre.

Esto ocurre, porque durante el mes de marzo (estación seca, baja escorrentía, nivel de embalses bajo), hay una fuerte componente de demanda reactiva por la conexión de ventiladores y equipos de aire acondicionado; también, el perfil de generación hidroeléctrica es muy bajo respecto al de diciembre (estación seca, alta escorrentía, nivel de embalses alto), y prácticamente está disponible todo el parque de generación (muy poco mantenimiento de unidades generadoras). Por esta razón, se ha elegido los escenarios de demanda del mes de marzo como los casos base para el presente estudio, cuyos perfiles de demanda y generación se han copiado del estudio referido arriba.

¹ Sección 9.4, Análisis de estabilidad de voltaje.

Escenario de dem	máxima		media		Mínima			
Mes			Marzo		Marzo		Marzo	
Generación activa	total (M	N)	874		870		414	
Intercambio Neto	0	.2	0.	0.1		.1		
Pérdidas (MW)			18	8.0	19	.5	5	.7
Demanda activa to	otal (MW)	860.0	226	834.1	283	430	122
Subestación	nodo	Voltaje	Р	Q	Р	Q	Р	Q
Soyapango	22301	23	89.2	19.4	109.6	32.1	45.4	8.1
San Antonio Abad	22361	23	97.6	21.8	121.6	34.0	35.2	7.4
Nejapa	22371	23	92.5	26.0	82.9	28.2	59.4	18.1
Nuevo Cuscatlán	22421	23	74.1	19.9	82.8	26.3	35.1	11.6
San Bartolo	22451	23	60.9	13.5	59.2	17.1	32.2	7.7
Acajutla	23131	34.5	10.1	5.0	10.1	5.2	5.5	3.7
Ateos	23441	34.5	7.5	1.1	7.0	1.9	3.9	0.7
Guajoyo	24111	46	7.4	1.1	6.4	1.1	3.1	0.1
Acajutla	24131	46	10.1	2.3	6.4	2.4	4.2	1.4
Ahuachapán	24161	46	17.2	4.6	11.6	3.9	6.1	2.4
Cerrón Grande	24171	46	15.6	4.0	10.9	3.3	5.2	1.2
15 de Septiembre	24182	46	10.2	2.5	7.5	2.3	4.3	1.3
Soyapango	24301	46	14.8	3.5	11.9	4.1	5.7	1.3
San Rafael Cedros	24321	46	29.3	6.9	18.8	6.3	10.6	3.0
San Miguel	24341	46	84.1	23.4	72.8	24.9	39.4	11.7
Santa Ana	24351	46	55.8	14.1	50.5	15.5	26.9	7.2
Opico	24381	46	30.1	12.1	30.0	14.6	20.6	9.9
Tecoluca	24391	46	18.7	5.4	14.7	5.4	7.8	3.2
Ozatlán	24401	46	23.5	5.7	17.6	5.9	9.3	2.7
Sonsonate	24411	46	14.7	6.6	10.8	6.4	3.9	3.8
Ateos	24441	46	38.0	10.2	45.4	19.3	18.9	7.4
Santo Tomás	24461	46	41.7	11.0	53.9	17.1	18.1	4.9
El Pedregal	24471	46	30.8	6.1	27.5	5.3	13.0	3.1

Cuadro 1 - Demanda de potencia activa y reactiva por subestación y nivel de voltaje.

Escenario de d	а			Máxima		Media		Mínima		
Posonya Total	Reserva Total (%)					Prim	Sec	Prim	Sec	Prim
neserva rolar	(70)				3.0%	4.1%	3.0%	4.4%	4.2%	4.0%
Generación sistema(MW)	Generación total y pérdidas de sistema(MW)					18.1	890	19.5	420	5.7
Intorcambios Ir	tornac	ionalo	- (\/\\	n	Guat	Hond	Guat	Hond	Guat	Hond
	llemac	lonales)	0.3	0.2	0.0	-0.1	1.7	-1.6
Planta	nodo	Unidad	Pmax	AGC ²	Generada	Reserva	Generada	Reserva	Generada	Reserva
GUAJOYO	21111	1	12.0	1	10.1	1.9	10.1	1.9	0.0	0.0
CERRÓN	21171	1	70.0	0	67.9	2.1	67.9	2.1	0.0	0.0
GRANDE	21172	2	70.0	0	67.9	2.1	67.9	2.1	0.0	0.0
	21101	1	19.0	1	15.5	3.5	15.5	3.5	0.0	0.0
	21102	2	19.0	1	15.5	3.5	15.5	3.5	15.5	3.5
NOVIEMBRE	21102	3	19.0	1	15.5	3.5	15.5	3.5	15.5	3.5
-	21104	4	17.0	1	0.0	0.0	0.0	0.0	0.0	0.0
	21104	5	20.0	1	16.7	3.3	16.7	3.3	17.0	3.0
15 DE	21181	1	90.0	0	80.0	10.0	80.0	10.0	0.0	0.0
SEPTIEMBRE	21182	2	90.0	0	0.0	0.0	0.0	0.0	0.0	0.0
ACAJUTLA	21131	1	30.0	0	29.1	0.9	29.1	0.9	29.1	0.9
VAPOR	21132	2	30.0	0	29.1	0.9	29.1	0.9	29.1	0.9
ACAJUTLA GAS	21135	5	61.0	1	59.0	2.0	59.0	2.0	0.0	0.0
	21136	1-3	48.0	0	46.5	1.5	46.5	1.5	31.0	1.0
ACAJUILA MOTORES	21138	4-6	48.0	0	46.5	1.5	46.5	1.5	0.0	0.0
	21138	7-9	48.0	3	39.0	9.0	39.0	9.0	28.0	4.0
SOYAPANGO	21301	1-3	15.0	0	0.0	0.0	0.0	0.0	0.0	0.0
	21161	1	22.5	0	21.8	0.7	21.8	0.7	21.8	0.7
AHUACHAPÁN	21162	2	22.5	0	21.8	0.7	21.8	0.7	21.8	0.7
	21163	3	36.0	0	35.0	1.0	35.0	1.0	35.0	1.0
	21211	1	28.0	1	25.0	3.0	25.0	3.0	25.0	3.0
BERLÍN	21212	2	28.0	1	25.0	3.0	25.0	3.0	25.0	3.0
	21213	3	28.0	0	38.0	3.0	38.0	3.0	38.0	3.0
	21214	4	9.2	0	0.0	0.0	0.0	0.0	0.0	0.0
	21371	1-8	48.0	0	46.6	1.4	46.6	1.4	46.6	1.4
NEJAPA	21372	9-17	54.0	1	52.4	1.6	52.4	1.6	20.5	3.5
	21373	18-27	60.0	0	34.9	1.1	32.3	3.7	0.0	0.0
CESSA	21112	1-5	6.5	5	5.5	1.0	5.5	1.0	5.0	1.5
CASSA	21411	1-3	70.0	0	0.0	0.0	0.0	0.0	0.0	0.0
TALNIQUE	21441	1-3	50.1	0	48.0	2.1	48.0	2.1	16.0	0.7

Cuadro 2 - Perfil de generación por escenario de demanda, estación seca de marzo, sin transacciones internacionales.

² Número de unidades que prestan el servicio de AGC.

5. <u>HERRAMIENTAS DE ANÁLISIS Y BASE DE DATOS</u>

Las tres principales herramientas que fueron utilizadas para el presente estudio fueron:

- □ Análisis de contingencias
- □ Curvas P-V y curvas Q-V
- □ Simulación dinámica

Estas herramientas son parte de la funcionalidad de los programas PSS/E y TPLAN de Siemens Power Technologies Inc. (PTI), los cuales requieren el desarrollo de un modelo de flujos de potencia y simulación dinámica.

El programa PSS/E versión 31 (Power System Simulator) para simulación de sistemas de potencia, es un programa muy robusto, versátil y de gran aceptación mundial. La base de datos utilizada en el PSS/E es la base de datos regional 2008 del EOR que ha está actualizada para toda Centroamérica. Para cada escenario de demanda y de intercambio, se ha preparado un archivo en formato *.sav para su evaluación particular. La base de datos dinámica se encuentra en el archivo EDBV08.dyr, el cual incorpora todos los modelos dinámicos de generadores, reguladores de velocidad, sistemas de excitación, relés de frecuencia, etc., los cuales se encuentra en la Página Web de la UT para ser descargada.

Para el análisis de estabilidad de voltaje, se adoptaron los procedimientos clásicos que usan el cálculo de las curvas P-V y Q-V; si bien, el PSS/E facilita el cálculo de las curvas P-V/Q-V del sistema, no es posible obtener las curvas P-V asociadas a los nodos de cargas simultáneamente del lado alta como de baja tensión de la misma subestación. Por consiguiente, se desarrolló un programa en IPLAN³ para obtener dichas curvas y los resultados fueron graficados en una hoja de cálculo de Excel.

El programa TPLAN, versión 8.5, está diseñado para la evaluación de la confiabilidad del sistema de transmisión e incorpora una gran variedad de herramientas de análisis que facilitan el cómputo y análisis de la confiabilidad del sistema. Incorpora un algoritmo de solución de flujos de potencia No-Divergente para identificar las contingencias críticas y los escenarios de colapso de voltaje.

La herramienta utilizada del TPLAN en el presente estudio es el "análisis de contingencias", cuya función es estudiar la pérdida de un elemento usando flujos de potencia e incorpora los criterios de seguridad para evaluar: islas eléctricas, secuencias de disparos, colapsos de voltajes, esquemas suplementarios de desconexión de carga o generación, redespacho, etc. Asimismo, es capaz de combinar contingencias específicas con una selección automatizada de las mismas, realizando así un análisis determinista.

La base de datos utilizada en el TPLAN es la misma base de datos regional usada por el PSS/E, pero el formato de archivo requerido por TPLAN que es el de la versión 29 del PSS/E, para ello se corre una rutina de transformación donde los archivos se generan a partir de los archivos en formatos *.sav y se convierten en formato *.raw (versión 29 del PSS/E).

³ Lenguaje de programación para usuarios del PSS/E.

6. <u>COMPONENTES DE SISTEMAS DE POTENCIA Y MODELOS</u>

6.1. Banco de capacitores operados manualmente

Este tipo de componentes, provee potencia reactiva al sistema resultando en un incremento del voltaje local, y son conectados / desconectados en forma remota por el operador del sistema. Uno de sus mayores inconvenientes es que su potencia reactiva es directamente proporcional al cuadrado del voltaje en terminales. Esto implica una significativa reducción en el soporte de voltaje bajo condiciones de bajo voltaje. La reducción en el soporte de potencia reactiva, cuando el voltaje del sistema decae debido a contingencias, tiende a acelerar el colapso de voltaje.

Como estos dispositivos no poseen mecanismos automáticos de control, permanecen fijos durante las simulaciones dinámicas y pueden ser operados solamente en simulaciones de estado estable, en la obtención del caso de flujo de potencia [3].

6.2. Características de carga

En [4] se detalla los modelos de carga, su clasificación y la naturaleza de estos modelos y su apropiada aplicación en los estudios de estabilidad de voltaje, son explicados brevemente a continuación:

6.2.1. Modelos estáticos de carga

Un caso de flujo de potencia (análisis de estado estable), la frecuencia del sistema es considerada constante y por eso, la potencia consumida por la carga es una función del voltaje solamente. La forma básica de representarlo está dada por:

$$S = S_o \left[\frac{V}{V_o} \right]^{\alpha}$$
 Ecuación (1)

donde: S es la potencia aparente instantánea drenada por la carga, So es la potencia aparente drenada por la carga bajo condiciones de estado estable, Vo es el voltaje de estado estable, V el voltaje instantáneo en la barra de la carga y α determina la respuesta de la carga a las desviaciones de voltaje.

Al dejar que α sea igual a 0, 1 ó 2; la respuesta de la carga será de potencia constante (CS), a corriente constante (CI) o a impedancia constante (CZ) respectivamente.

En todo estudio de sistemas de potencia, hay cierta incertidumbre con la selección del modelo de carga para flujos de potencia ya que no se conoce a cabalidad la naturaleza de la carga, y además que se está delimitando la respuesta a una característica lineal de carga ZIP⁴; los porcentajes designados para representar la sensibilidad de la carga ante las

⁴ ZIP: Impedancia, corriente o potencia constante.

variaciones de voltaje son muy variadas y las más aceptadas son el modelo que convierte el 100% de la potencia activa al 100% de corriente constante y, el 100% de la potencia reactiva se convierte a 100% de impedancia constante.

Para el presente estudio, los casos bases y el análisis de contingencias fueron resueltos a potencia constante; para el análisis con curvas P-V y Q-V, las cargas fueron convertidas a 50% de la potencia activa a corriente constante y el 50% de la potencia reactiva a impedancia constante.

6.2.2. <u>Modelos dinámicos de carga</u>

En contraste con los modelos estáticos, los modelos dinámicos toman en cuenta la naturaleza variante en el tiempo de las características de operación del elemento de potencia, como son:

- Motores de inducción
- □ Lámparas de descarga
- □ Cargas con controles termostáticos
- □ Cambiadores de taps bajo de carga de transformadores de distribución.

Una forma racional de representar el efecto combinado de los tipos de carga se utiliza en el método de combinación de componentes individuales, el cual hace una conversión de los porcentajes de clases de cargas (industrial, comercial y residencial) a porcentajes de cargas tipo (motores de inducción grandes, pequeños, lámparas de descarga, cargas lineales, tal como se muestra en la siguiente figura).

Fig. 1 Método de combinación de componentes individuales.

En [5] se indica el procedimiento seguido para obtener todos los modelos dinámicos de carga de El Salvador, que fueron utilizados en el presente estudio.

La representación final para simulaciones dinámicas se efectúa con el modelo CLOD, al cual se le indica los porcentajes de motores grandes, pequeños, lámparas de descarga y el resto de la carga (ver Fig. 2).

Fig. 2 Modelo CLOD

A modo de comparación, se ha graficado la respuesta dinámica de la carga entre el modelo CLOD y ZIP ante una falla trifásica a tierra en la línea SMAR-STOM. En la figura 3 se indica la respuesta dinámica del voltaje en el nodo de 46 kV de Santo Tomás, que al inicio tiene diferencias notables, no así cuando se ha estabilizado el disturbio.

Fig. 3 Comparación de respuesta dinámica de voltaje entre modelos ZIP y CLOD

También, la respuesta dinámica de la potencia activa y reactiva de la carga de Santo Tomás, son más notorias como se ve en la gráfica de la Fig. 4. Este comportamiento fue validado en [5] comparando las simulaciones contra las variaciones reales obtenidas de los registradores cuando han ocurrido fallas.

Fig. 4 Comparación de respuesta dinámica de voltaje entre modelos ZIP y CLOD

En [6], en colaboración con la Universidad Centroamericana José Simeón Cañas, se intentó obtener los modelos de carga a partir de mediciones experimentales de corriente y voltaje durante y después de una falla en el sistema y el consiguiente análisis para obtener los parámetros ZIP del modelo de carga para ser empleado en las simulaciones estáticas y dinámicas. No se emplearon los resultados, porque el método exige una validación de largo plazo.

6.3. Cambiadores de tap bajo carga de transformadores de distribución

Los cambiadores de taps permanecen fijos en los análisis de estado estable bajo contingencias y durante las simulaciones dinámicas de contingencias, debido a que las constantes de tiempo de los controles del mismo, son muy grandes y por las razones que se exponen en la sección 7 y por los criterios indicados en [3], no fue necesario modelar dicho cambiador de taps, ni tampoco hacer uso de la simulación de largo plazo del PSS/E.

6.4. Sistemas de excitación dinámicos

Los generadores síncronos equipados con excitadores de alta respuesta inicial, mejoran la estabilidad transitoria del sistema de potencia. Durante un disturbio que provoca una

depresión del voltaje cercana al punto de inyección del generador, el excitador empuja la corriente de campo incrementando la generación de potencia reactiva para abastecer al sistema. Los excitadores generalmente regulan el voltaje en terminales dentro de una banda predefinida condicionada por los límites de capabilidad del generador. Más allá de esto, el limitador de sobreexcitación se activa y el control del voltaje ya no está disponible desde este momento para el generador.

Los limitadores de máxima excitación fueron simulados con el modelo y datos de la figura 5, para simulaciones dinámicas. Los datos empleados son los mismos empleados en [2], excepto que se usó el modelo MAXEX2 que se sintoniza con el voltaje de campo nominal del generador.

IBUS, 'MAXEX2', I, 0, EFD_{RATED}, EFD₁, TIME₁, EFD₂, TIME₂, EFD₃, TIME₃, EFD_{DES}, K_{MX}, V_{LOW}/

Fig. 5 Modelo MAXEX2 para limitadores de excitación del PSS/E

7. <u>ESCENARIOS DE INESTABILIDAD DE VOLTAJE</u>

En [3], se explica que hay tres escenarios de estabilidad de voltaje, que dependen del contexto bajo el cual esté operando el sistema de potencia:

- Período de corto plazo: Este se inicia típicamente con la ocurrencia del disturbio hasta un poco antes del primer movimiento de un Cambiador de Tap Bajo Carga (30 segundos). Durante el cual se considera que se activan los controles de bancos de capacitores interrumpibles, la dinámica de los motores de inducción, sistemas de excitación.
- Período de mediano plazo: Este típicamente dura dos minutos después del período de corto plazo y es caracterizado por la activación de los Cambiadores de Taps Bajo Carga (ULTC) de los transformadores de distribución, antes de comprometer los limitadores de excitación.
- Período de largo plazo: Una vez que se han hecho todos los movimientos de ULTC y fuentes de potencia reactiva. Es caracterizado por la activación de los limitadores de máxima excitación.

En el contexto del sistema de potencia salvadoreño, los ULTC se han configurado para que trabajen 3 minutos después de que se ha detectado una variación de voltaje en el secundario del transformador que haya que corregir.

Por otro lado, por los parámetros usados de los limitadores de máxima excitación, éstos se activarían en un marco de referencia de corto plazo, porque los ULTC tardan 3 minutos en activarse.

Sobre la base de los resultados que se obtienen para determinar el tiempo de establecimiento después de un disturbio⁵ y por los resultados observados durante el proceso de diseño del EDCBV, se concluye que el marco de tiempo para el cual puede ocurrir un colapso de voltaje es el de corto plazo.

En otras palabras, se determinó por los resultados, que el sistema salvadoreño es propenso a un colapso de voltaje de tipo clásico, el cual, es caracterizado por una depresión del voltaje en un centro de carga seguido de un disparo y ocurre dentro de los primeros segundos después de la falla, por no tener suficientes suministros de reserva de reactivos para estabilizar el voltaje del sistema [7].

8. <u>METODOLOGIA</u>

Hay diferentes maneras para diseñar un EDCBV y por consiguiente, hay que adoptar muchos criterios que vienen asociados en éstas metodologías, y en el presente estudio, esto no fue la excepción; se adoptaron muchos criterios bien probados por muchas compañías norteamericanas, pero también, se desarrollaron criterios propios para determinar los parámetros de actuación del EDCBV.

⁵ Pag. 82, Determinación del tiempo de retardo para iniciar disparo de carga; Anexo 2 del presente estudio.

En general, se adoptaron los lineamientos del documento "Undervoltage Load Shedding Guidelines" de la WSCC, el cual, fue usado en conjunto con otro documento "Voltaje Stability Criteria, Undervoltage Load Shedding Strategy, and Reactive Power Reserve Monitoring Methodology" también de la WSCC [8]. La metodología seguida en esta investigación incluye también las herramientas de análisis de estado estable como de análisis dinámico; las cuales son explicadas a continuación, paso a paso (ver Fig. 6).

Fig. 6 Metodología del estudio de diseño del EDCBV

8.1. Selección de casos base

Se retomaron los casos base del estudio de Evaluación de Restricciones de Transmisión 2008 [9]; en el cual, se desarrollaron los modelos de flujos de potencia para análisis de restricciones de transmisión y máxima transferencias, y en el presente estudio, se escogieron los casos que cumplieron con los requerimientos de la metodología.

Los casos bases que fueron retomados para iniciar el presente estudio son todos los escenarios de demanda del mes de marzo y diciembre de 2008 (demanda máxima diurna, demanda máxima nocturna y demanda mínima), y considerando los casos de máxima transferencias entre los países vecinos.

Para establecer cuáles casos hay que seleccionar, depende del nivel de seguridad elegido para trabajar y depende de las condiciones asumidas: nivel de estrés en el sistema de transmisión, incertidumbre en el pronóstico de la demanda, incertidumbre asociado al despacho de los casos base, etc. Y por lo anterior, el criterio de selección asumido en el presente estudio, fue la selección del peor escenario y el peor escenario para el control del voltaje y manejo de las reservas de potencia reactiva corresponde a los casos del mes de marzo. Esto se pudo constatar observando los resultados del análisis de estabilidad de voltaje, específicamente, identificando los casos con menores márgenes de reserva de reactivos.

8.2. Identificación de áreas locales

Desde la perspectiva del control del voltaje, el área local es aquella que ante una perturbación, el voltaje de los nodos del área se deprime en forma conjunta. Los buses más débiles tienden a tener los valores más altos de $\delta V/\delta Q$ y tienden a ser más susceptibles a colapsos de voltajes dado por el gran consumo relativo de potencia relativa para pequeños reducciones de voltaje. Este tipo de cargas, son candidatos apropiados para un corte de carga [4].

Para identificar el área local, se aplica un capacitor de 50 MVAR en cada uno de los nodos del sistema, uno por vez; se ejecuta el análisis de la curva Q-V de dicho nodo y se compara el cambio en el margen de VAR, con y sin capacitor.

Se calcula el factor de efectividad del bus, como el cambio del margen de VAR entre la inyección de MVAr del capacitor ($\Delta Q/Qcap$) y se calcula el factor de sensitividad, como la variación del voltaje entre la inyección de MVAr del capacitor ($\Delta V/Qcap$).

Los valores similares de factores de sensitividad y efectividad, identificarán los nodos pertenecientes a un área local. De esta manera, el estudio de estabilidad de voltaje, y por consiguiente, del diseño del EDCBV, se enfocará en el área local de bajo voltaje; el estudio de contingencias también será más localizado.

8.3. Análisis de contingencias y selección de escenarios

En esta parte, el TPLAN fue aplicado al sistema salvadoreño para buscar problemas de voltaje de estado estable para cada uno de los escenarios de demanda y para cada uno de los casos de máximo intercambio con las áreas vecinas. Este incluye el análisis N-1 y N-2 de contingencias aplicadas a la red de transmisión.

Para el análisis de contingencias N-1 se retomaron los resultados del estudio de Evaluación de Restricciones de Transmisión 2008, considerando solamente los casos de bajo voltaje que operan en la de banda de operación de voltaje en emergencia (0.9-1.1 p.u.). Se identifica las contingencias más críticas (las de más bajo voltaje).

Para el análisis de contingencias N-1/N-2, el objetivo es identificar las contingencias que producen la mayoría de los casos de colapso de voltaje y perfiles de voltajes más bajo, e identificar los nodos con abatimiento de voltaje más severos.

Con el objeto de evitar el analizar los casos menos críticos, primeramente se hace un análisis de la cantidad de casos de contingencias N-2 que se producen en función de la violación del límite inferior de voltaje; a manera de ejemplo, se reproduce el cuadro siguiente:

Límite inferior de	Número de casos con	Número de casos
	inferior de volteie	voltaja o da No
(p.u.)	interior de voltaje	convergencia
0.90	258	2
0.89	145	2
0.88	82	2
0.87	72	2
0.86	69	2
0.85	69	2
0.84	30	2
0.837	13	2
0.83	6	2

Cuadro 3 - Número de contingencias en función de la violación del límite inferior de voltaje

Observando los resultados del cuadro anterior, es posible adoptar un límite razonable de casos a analizar que contenga los casos más críticos. Así, evaluar 13 casos de contingencias críticas que violen el límite de 0.837 p.u. es más razonable que evaluar 69 casos donde se viole el 0.85 p.u. de voltaje. Este criterio se justifica sobre la base de que no todas las contingencias N-2 son muy probables; por ejemplo, los disparos de líneas de doble circuito o de subestación común son más probables que el disparo de dos líneas separadas por dos o más subestaciones y trayectorias distantes. Además, las contingencias de modo común suelen provocar más problemas que las que no son de modo común.

8.4. Selección de contingencias críticas

8.4.1. <u>Cálculo de la reserva de potencia reactiva</u>

A continuación se obtiene las curvas Q-V para contingencias N-1 y N-2, a partir de los cuales se "lee" la reserva de potencia reactiva para los nodos críticos. Luego se calcula la reserva de potencia reactiva del área local (que contiene los nodos críticos) por contingencia; los casos con reserva de potencia reactiva más pequeña serán tomados como las contingencias críticas N-1/N-2.

De la lista precedente, se identifica cuáles escenarios de contingencias N-2, contiene una de las contingencias N-1 más críticas identificas anteriormente, con el propósito de clasificar la contingencia N-1 crítica previa a la contingencia N-2 crítica con colapso de voltaje y la siguientes contingencia N-2 crítica sin colapso de voltaje.

8.4.2. <u>Cálculo del margen de potencia reactiva</u>

Para la lista de contingencias N-1 de la sección anterior, se calculo el margen de potencia reactiva de los nodos críticos, lo cual servirá como parámetro de referencia para la evaluación final del EDCBV.

8.5. Análisis de las curvas P-V

Para la obtención de la curva PV, se ejecuta la solución de flujos de potencia haciendo crecer la carga total y la generación total del área analizada. La razón a la cual crece la generación corresponde a un paso de MW fijo ingresado manualmente, el cual se usa para el escalamiento de toda la generación en el área de El Salvador; del mismo modo, con el mismo paso, se aplica un escalamiento a toda la carga del área de El Salvador, manteniendo la misma razón P/Q de cada carga, dicha labor fue realizada con una programa en IPLAN "*pv load curve.ipl*".

Para la construcción de la curva P-V, hay que considerar ciertos factores clave [10]:

- □ La ubicación del nodo oscilante debe quedar fuera del área de control (se ubicó en Chixoy);
- El método de solución de los casos de flujo de potencia (se resolvieron usando un método estándar FDNS);
- Las acciones automáticas de los elementos del sistema para controlar el voltaje tales como banco de capacitores, cambiadores automáticos de "taps" bajo carga de los transformadores reductores son habilitadas /deshabilitadas mediante banderas de control dentro del PSS/E;
- □ Las restricciones de límites de generación de potencia activa y reactiva son controladas con banderas de chequeo en el archivo de flujo de potencia.
- □ La existencia de controles suplementarios que operen en el marco de tiempo de tres minutos.

Para la construcción de las curvas P-V con contingencias, las simulaciones de flujo de potencia de los casos usaron el nodo oscilante en Chischil y se resolvieron los casos con FDNS, excepto los casos base de disparo de unidades, los cuales se resolvieron inicialmente con INLF, flujos de potencias basado en estatismos de generadores ("Inertia/Gobernor Power Flow") [11], el cual asume que, después de un disturbio o contingencia, todos los generadores que estén en línea con gobernadores desbloqueados serán ajustados para corregir cualquier excedente o deficiencia de generación de acuerdo con sus estatismos. Se aplicaron las restricciones de límites de generación de reactivos. Se deshabilitaron la actuación de los cambiadores de taps bajo carga de los transformadores reductores, ya que el tiempo de actuación de los mismos es bastante prolongado comparado con el tiempo de estabilización después del disturbio(3 minutos).

Fig. 7 Ejemplo de Curvas P-V calculados

En la figura anterior, se muestra una gráfica de curvas P-V calculado en este estudio para una subestación en particular (San Miguel), mostrando la curva P-V para el caso base (sin contingencia y deshabilitado los LTC) usado como referencia; luego la curva P-V para contingencia N-1 en verde (en el recuadro se indica la línea de transmisión que queda fuera) y para contingencia N-2 en rojo. La línea más gruesa corresponde al nodo de bajo voltaje, y la más delgada, al nodo de alto voltaje.

Las siguientes definiciones se hacen con referencia a la gráfica de la figura 8.

8.5.1. Punto de colapso

Caracterizado por la "nariz" de la curva P-V para contingencia N-1, limitando la potencia de transferencia a la carga a P^C.

8.5.2. Banda de disparo y voltaje mínimo de operación

Hay muchos criterios para determinar el voltaje de disparo de la carga. Algunas compañías recomiendan para este valor que debería ser el voltaje en el punto de colapso de la curva PV para una contingencia más crítica de contingencia simple o doble [12].

Para cada centro de carga, se puede determinar un Voltaje Mínimo de Operación de disparo de la carga, para el cual es deseable considerar un margen de ajuste o factor de seguridad. Entonces, el voltaje mínimo de ajuste de disparo de un relevador debe ser igual o superior a este valor [1].

El método de la WSCC, incorpora un margen del 5% desde el punto de colapso de voltaje, tal que el punto de Voltaje Mínimo de Operación para contingencia N-1 (V_{N-1}^{F}) corresponde a una potencia $P^{F} = 0.95 P^{C}$; dicho punto define la frontera inferior de la banda de disparo.

El límite superior de voltaje de la banda de disparo para condiciones N-1, sería determinado por el punto que corresponde al Voltaje Mínimo de Operación en condiciones N-2, a potencia P^S, o bien, como resultado de las correcciones iterativas durante las simulaciones dinámicas (criterio UT).

La consideración clave en la determinación del voltaje mínimo de operación para condición N-1, es la de calcular la curva PV para la peor contingencia simple en tanto que la siguiente peor contingencia simple (condición N-2) no cause colapso de voltaje. También que el

punto F quede al lado izquierdo del punto de colapso de la curva PV en condición N-2; ¿qué tan a la izquierda? Dependerá de la pendiente en el punto S de la curva PV.

8.5.3. Punto de recuperación

Para llevar el voltaje a niveles seguros de operación, se debe cortar suficiente carga. El voltaje de recuperación deberá ser de tal magnitud, que cuando a lo largo de la curva PV para contingencia simple, y se da una contingencia adicional (N-2), deberá ser soportado en los niveles seguros de operación [12]. Este es el punto de recuperación, y una vez identificado este parámetro, el mínimo valor de carga a cortar es establecido.

8.5.4. <u>Mínima carga de corte</u>

La determinación de la mínima carga de corte y su localización son los dos parámetros más importantes de un EDCBV. Un corte insuficiente de carga podría no prevenir el colapso de voltaje, y un corte sobredimensionado de carga podría resultar en condiciones de sobrefrecuencia.

Con el propósito de establecer la mínima carga de corte del EDCBV, que garantice la recuperación del voltaje tanto en condición N-1 como en condición N-2, se adopta el criterio de contar con suficientes puntos de corte a lo largo del área local de bajo voltaje, tal que no se concentre grandes proporciones de corte de carta en un solo lugar, mas bien distribuido. Quién dispare primero, dependerá de la respuesta dinámica del sistema.

El tamaño de la carga a cortar se determina usando las curvas PV del nodo de carga, no del sistema.

Como el Voltaje Mínimo de Operación define dos puntos: F sobre la curva PV (N-1), S^{N-2} sobre la curva PV (N-2); en el instante que el voltaje del nodo de carga se deprima hasta este punto, hay que cortar la carga que nos lleve hasta el punto de recuperación. Si se produce una contingencia simple, hay que cortar $P^F - P^R$; si se produce una contingencia doble, hay que cortar $P^S - P^R$. El tamaño de carga a cortar debe llevar al voltaje a niveles seguros de operación, aún, si después de una contingencia simple, se produce otra contingencia adicional. Por lo tanto, la diferencia más grande sería suficiente.

Por otro lado, si el voltaje decae hasta el punto S^{N-1} , sobre la curva PV de contingencia simple, una contingencia adicional nos llevaría de nuevo a una condición de corte. Para esta situación, se define un nuevo nivel de voltaje para el corte de carga, V^{S}_{N-1} ; los porcentajes de carga a disparar asignados serán:

V_{N-1}^{F} , dispara $S_1 = (P^{F} - P^{R})/P^{F} * 100\%$	Ecuación (2)
V_{N-1}^{S} , dispara $S_2 = (P^{S} - P^{R})P^{R} * 100\%$	Ecuación (3)

El tamaño de corte de carga que se asigne en la práctica, dependerá de los tamaños de carga que son servidos a través de los interruptores de distribución y que en teoría deben ser iguales o mayores al determinado en el presente estudio.

8.6. Determinación de parámetros del EDCBV

Un EDCBV es inherentemente un esquema multi-paso, en el sentido de que los nodos experimentarán diferentes voltajes y caídas de voltajes y debe tener para cada nodo diferentes ajustes de disparos y tiempos de retardo para evitar un sobretiro de carga. Por eso, al final, se hace una evaluación dinámica del EDCBV para corregir y coordinar voltajes de disparos, porcentajes de tiro de carga y tiempos de retardo.

Usualmente se recomienda para cada nodo de carga disparos de carga en tres etapas [13]. En [13], se definió el siguiente esquema para Puget Sound Co.:

5% de carga al voltaje 10% debajo del más bajo normal con 1.5 segundos de retardo. 5% de carga al voltaje 8% debajo del más bajo normal con 3.0 segundos de retardo. 5% de carga al voltaje 8% debajo del más bajo normal con 6.0 segundos de retardo.

El criterio que subyace en el esquema anterior es el una tercera etapa, que dispararía carga en caso que, aún habiéndose disparado la primera o la segunda etapa, el voltaje permanece mucho tiempo en un 8% por debajo del valor más bajo de voltaje de operación normal.

Aplicando el criterio a la metodología desarrollada aquí:

 V_{N-1}^{F} , dispara $S_1 = (P^{F}-P^{R})/P^{F} * 100\%$, con t_1 segundos de retardo V_{N-1}^{S} , dispara $S_2 = (P^{S}-P^{R})P^{R} * 100\%$, con t_2 segundos de retardo V_{N-1}^{S} , dispara $S_2 = (P^{S}-P^{R})P^{R} * 100\%$, con t_3 segundos de retardo Ecuaciones (4)

donde: $t_3 > t_2 > t_1$

Donde t_1 es el mínimo tiempo de retardo, t_2 y t_3 son tiempos que inicialmente serán 3 y 6 segundos, pero que serán coordinados en la evaluación dinámica del EDCBV.

8.7. Determinación del mínimo tiempo de retardo

Otro parámetro importante en un EDCBV es el tiempo de retardo para iniciar disparo de carga. En [13] se sugiere un tiempo de al menos 1.5 segundos, y WECC [8] sugiere un tiempo de 3 a 10 segundos.

La principal motivación para retardar el disparo de carga es asegurar que el sistema se encuentra seguramente en condiciones inestables de voltaje; también, para asegurarse que se ha limpiado la falla que originó el disturbio y que el voltaje ha alcanzado valores de estado estable.

Para determinar el tiempo de retardo para un estudio en particular, es recomendado analizar varia contingencias y observar el tiempo que tarda en limpiarse la falla y las condiciones de estado estable. En la figura 9, todas las fallas simuladas se estabilizan antes de 1.7 segundos; habiéndose limpiado la falla a 0.6 segundos, esto indica un margen de 1.5 segundos.

Fig. 9 Simulación dinámica para determinar el retardo de tiempo

8.8. Evaluación dinámica y verificación de parámetros

Mientras que el análisis de flujos de potencia provee bastante información acerca de cuánta carga debe ser cortada para proteger al sistema de un colapso de voltaje y mantener adecuado el voltaje de operación, el análisis dinámico es necesario para confirmar y afinar los detalles de diseño encontrados con el análisis estático.

El voltaje de umbral de disparo, la cantidad de carga a disparar y el tiempo de retardo, son ajustados en cada simulación cambiando una de las variables por vez. El ajuste óptimo será aquellos en las cuales la cantidad de carga a disparar en el área local sea el mínimo mientras se asegura que el voltaje de umbral de disparo esté suficientemente bajo para evitar un falso accionamiento.

Se empieza ensayando el EDCBV con contingencias simples, que en la mayoría de los casos, no se espera disparo de carga; luego se continúa ensayando el EDCBV con contingencias dobles y finalmente con escenarios de colapso de voltaje.

Para ilustrar la operación del EDCBV, en las figuras 10 y 11, se muestra su operación para las siguientes contingencias que involucra falla trifásica en línea de transmisión y limpieza a los 10 ciclos: 1) SMAR-STOM (azul), 2) SMAR-STOM & ACAJ-ATEO (magenta), 3) SMAR-STOM & NEJA-SANT (colapso de voltaje, amarillo).

Fig. 11 Respuesta de la potencia aparente

La contingencia 1, activó la etapa 1 de tres subestaciones con retiro de carga; la contingencia 2, activó la etapa 1 de tres subestaciones con retiro de carga; y, la contingencia 3, activo 7 etapas que incluyen varias etapas de varias subestaciones.

9. <u>RESULTADOS</u>

9.1. Identificación de área locales

9.1.1. <u>Demanda máxima</u>

Un resumen de los resultados se presenta a continuación, junto al cálculo del factor de efectividad y sensitividad:

Demanda	a máxin	na	Cálculo de	el factor de s	sensitividad	Cálculo d	el factor de	efectividad	
Mes de n	narzo		voltaje sin voltaje		4//40*102	margen Q	margen Q	Factor de	
Sub	nodo	Voltaje	comp	con comp		sin comp	con comp	efectividad	
OZAT	27401	115	0.956	1.016	1.20	-148	-164	9.8%	
TECO	27391	115	0.967	1.013	0.92	-175	-193	9.3%	
GUAJ	27111	115	0.989	1.034	0.90	-153	-169	9.5%	
SMIG	27341	115	0.96	0.998	0.76	-182	-200	9.0%	
SANA	27351	115	0.978	1.003	0.50	-229	-251	8.8%	
BERL	27211	115	1.009	1.029	0.40	-232	-256	9.4%	
OPIC	27381	115	0.977	0.993	0.32	-250	-274	8.8%	
NCUS	27421	115	0.964	0.98	0.32	-216	-239	9.6%	
STOM	27461	115	0.963	0.978	0.30	-228	-252	9.5%	
PEDR	27471	115	0.949	0.964	0.30	-149	-167	10.8%	
5NOV	27101	115	1.002	1.017	0.30	-227	-253	10.3%	
AHUA	27161	115	1.005	1.019	0.28	-300	-326	8.0%	
SONS	27411	115	1.005	1.018	0.26	-260	-287	9.4%	
SRAF	27321	115	0.986	0.999	0.26	-250	-276	9.4%	
15SE	27181	115	1.01	1.023	0.26	-291	-317	8.2%	
ACAJ	27131	115	1.026	1.037	0.22	-237	-267	11.2%	
ATEO	27441	115	0.983	0.993	0.20	-244	-269	9.3%	
CGRA	27171	115	0.999	1.009	0.20	-244	-271	10.0%	
SOYA	27301	115	0.973	0.98	0.14	-247	-274	9.9%	
SANT	27361	115	0.975	0.982	0.14	-249	-275	9.5%	
SMAR	27431	115	0.975	0.981	0.12	-260	-286	9.1%	
SBAR	27451	115	0.971	0.976	0.10	-248	-274	9.5%	
NEJA	27371	115	0.978	0.982	0.08	-263	-291	9.6%	

Cuadro 4 - Factores de efectividad y factores de sensitividad para demanda máxima

Una gráfica de los resultados ordenado por factores de efectividad se muestra a Continuación:

Fig. 12 Factores de efectividad para demanda máxima

Los resultados muestran por este método, que en el escenario de demanda máxima del mes de marzo y en condiciones N-0 de la red de transmisión, no hay indicación clara de la formación de áreas locales.

Y otra gráfica de los resultados ordenado por factores de sensitividad se muestra a continuación:

Fig. 13 Factores de sensitividad para demanda máxima

Se indica de mayor a menor, la sensitividad de variar el voltaje respecto a una inyección de reactivo del nodo. Hay una indicación de área local formado por Ozatlán, Tecoluca y San Miguel.

9.1.2. <u>Demanda media</u>

Demar	nda mec	lia	Cálculo de	el factor de	sensitividad	Cálculo d	el factor de	efectividad
Mes de marzo		voltaje sin	voltaje	dV/dO*10 ³	margen Q	margen Q	Factor de	
Sub	nodo	Voltaje	comp	con comp		sin comp	con comp	efectividad
PEDR	27471	115	0.934	0.996	1.24	139	157	11.5%
OZAT	27401	115	0.957	1.018	1.22	145	161	9.9%
GUAJ	27111	115	0.984	1.032	0.96	149	166	10.2%
TECO	27391	115	0.963	1.011	0.96	168	187	10.2%
SMIG	27341	115	0.963	1.003	0.8	179	197	9.1%
SANA	27351	115	0.973	1	0.54	222	243	8.6%
NCUS	27421	115	0.945	0.97	0.5	198	221	10.4%
STOM	27461	115	0.946	0.968	0.44	209	233	10.3%
BERL	27211	115	1.012	1.033	0.42	223	246	9.3%
OPIC	27381	115	0.967	0.987	0.4	236	260	9.2%
5NOV	27101	115	0.992	1.009	0.34	213	238	10.5%
SRAF	27321	115	0.977	0.993	0.32	233	259	10.0%
ATEO	27441	115	0.968	0.984	0.32	226	251	10.0%
SBAR	27451	115	0.958	0.974	0.32	228	254	10.2%
SONS	27411	115	0.999	1.014	0.3	250	277	9.7%
AHUA	27161	115	1.006	1.021	0.3	314	337	6.8%
15SE	27181	115	1.006	1.02	0.28	274	300	8.7%
SOYA	27301	115	0.959	0.973	0.28	227	253	10.3%
SANT	27361	115	0.96	0.974	0.28	228	254	10.2%
SMAR	27431	115	0.961	0.974	0.26	238	265	10.2%
ACAJ	27131	115	1.021	1.033	0.24	229	256	10.5%
CGRA	27171	115	0.989	1.001	0.24	227	254	10.6%
NEJA	27371	115	0.966	0.975	0.18	241	269	10.4%

Cuadro 5 - Factores	de efectividad	v factores de	sensitividad p	ara demanda	media
		y 14010100 40	Scholingad b	ara acmanaa	moulu

Una gráfica de los resultados ordenado por factores de efectividad se muestra a continuación:

Fig. 14 Factores de efectividad para demanda media

Los resultados muestran por este método, que en el escenario de demanda media del mes de marzo y en condiciones N-0 de la red de transmisión, no hay indicación clara de la formación de áreas locales. Y otra gráfica de los resultados ordenado por factores de sensitividad se muestra a continuación:

Fig. 15 Factores de sensitividad para demanda media

Se indica de mayor a menor, la sensitividad de variar el voltaje respecto a una inyección de reactivo del nodo. Nótese que Guajoyo aparece con un valor relativamente grande de sensitividad porque se encuentra en circuito radial. Hay una indicación de área local formada por los nodos PEDR, OZAT, TECO y SMIG.

9.2. Análisis de contingencias y selección de escenarios

9.2.1. <u>Demanda máxima</u>

a) Un cuadro resumen de resultados para las contingencias N-1 es el siguiente:

Cuadro 6 - Resultados del análisis de contingencias N-1 en demanda máxima.

CONTINGENCIAS N-1	NODO 115 KV	caso base	G->E 56	E->G 90	H->E 104	E->H 100
BERL-SMIG	SMIG	0.886	0.884			0.894
SPAE TECO	TECO	0.874	0.87			0.881
Shaf-TECO	OZAT	0.889				0.896
SMAR STOM	STOM		0.897			
3101An-310101	PEDR	0.889	0.881			0.89

b) Un cuadro resumen de resultados para las contingencias N-2 es el siguiente:

Cuadro 7 – Resultados del análisis de contingencias N-2 en demanda máxima.

CONTINGENCIAS N-2	NODO 115 KV	caso base	G->E 56	E->G 90	H->E 104	E->H 100
BERL-SMIG & 15SE-SMIG		V.C.	V.C.	V.C.	N.C.	N.C.
BERL-SMIG & 15SE-U1	SMIG				0.883	
BERL-SMIG & CGRA-U1	SMIG				0.888	
NOUS-ATEO & SPAE-TECO	TECO	0.868	0.865			0.877
NOUS-ATEO & SHAFTEOO	OZAT	0.886				
NCUS-STOM & SANT-NEJA	SANT				0.889	
NEJA-SMAR & SRAF-TECO	TECO		0.869			
SANT-NEJA & ACAJ-ATEO	SANT				0.878	
	NCUS	0.886		0.889	0.887	
SMAR-STOM & ACAJ-ATEO	STOM	0.866	0.863	0.876	0.878	0.869
	PEDR	0.85	0.846	0.86	0.871	0.853
SMAR-STOM & SANT-NEJA		N.C.	V.C.	V.C.	N.C.	V.C.
SMAR-STOM & SONS-ATEO	PEDR	0.865			0.886	
SMIG-OZAT & BERL-SMIG	SMIG	0.847	0.843	0.886	0.871	0.858
	SMIG	0.827*	0.818*		0.883	0.842*
SRAF-TECO & 15SE-SMIG	TECO	0.763*	0.753*		0.851*	0.781*
	OZAT	0.781*	0.771*		0.855	0.798*
	TECO	0.856	0.853			
SHAI-TECO & 133E-01	OZAT	0.874	0.869			
SRAF-TECO & 5NOV-SRAF	TECO		0.867			0.879
SRAF-TECO & ACAJ-ATEO	TECO		0.867			0.879
SRAF-TECO & AHUA-SANA	TECO		0.869			
	SMIG	N.C.	N.C.	0.725*	V.C.	N.C.
SRAF-TECO & BERL-SMIG	TECO			0.666*		
	OZAT			0.678*		
	TECO	0.866				
SHAI-TEGO & BERE-OT	OZAT	0.883				
	TECO	0.865				
SHAF-TEGO & BERL-03	OZAT	0.882				
SRAF-TECO & SOYA-NEJA	TECO		0.868			0.879
TECO-OZAT & 15SE-SMIG	OZAT	0.865	0.859		0.886	0.868
	SMIG	0.763*	0.756*	0.819*	0.795*	0.787*
ILOU-OZAT & BERL-SIVIIG	OZAT	0.736*	0.729*	0.795*	0.770*	0.761*

Se observa lo siguiente:

- a) Los nodos afectados (de mayor a menor) por bajo voltaje son: TECO, OZAT, SMIG, PEDR, STOM, NCUS, SANT.
- b) La contingencia que más problemas provocan es las que tiene asociada el disparo de la línea SRAF-TECO.
- c) El escenario que presenta los peores perfiles de voltaje corresponde a la importación de 56 MW desde Guatemala.
- d) Se comprueba que una vez determinado cuál escenario de transferencia provoca los peores resultados para contingencias N-1, el escenario de transferencia que provoca los peores resultados para contingencias N-2 es el mismo.

9.2.2. <u>Demanda media</u>

El cuadro 8 muestra el margen de potencia reactiva por contingencia y por bus analizado; los nodos débiles son aquellos que indican los menores márgenes de reserva. El cuadro 9 indica los voltajes resultantes para cada escenario de intercambio con contingencias N-2.

a) Un cuadro resumen de resultados para las contingencias N-1 es el siguiente:

CONTINGENCIAS N-1	NODO 115 KV	caso base	G->E 40	E->G 106	H->E 80	E->H 91
BERL-SMIG	SMIG	0.893	0.891		0.889	
SRAF-TECO	TECO	0.897	0.896			
SANT-NEJA	SANT		0.898			
	NCUS	0.888	0.886	0.895	0.883	0.894
NOUS-ATLO	PEDR	0.896	0.893		0.891	
	NCUS	0.877	0.871	0.881	0.876	0.879
SMAR-STOM	STOM	0.855	0.848	0.859	0.854	0.858
	PEDR	0.841	0.834	0.845	0.840	0.843

Cuadro 8 – Resultados del análisis de contingencias N-1 en demanda media.

b) Un cuadro resumen de resultados para las contingencias N-2 es el siguiente:

Cuadro 9 – Resultados del análisis de contingencias N-2 en demanda media.

CONTINGENCIAS N-2	NODO 115 KV	caso base	G->E 40	E->G 106	H->E 80	E->H 91
BERL-SMIG & 15SE-SMIG		V.C.	V.C.	V.C.	N.C.	N.C.
SMAR-STOM & CGRA-U1	PEDR	0.835	0.827	0.840	0.830	0.838
SMAR-STOM & ACAJ-U5	PEDR		0.807	0.829	0.819	0.827
SMAR-STOM & ATEO-GM	PEDR	0.819	0.826	0.838	0.833	0.836
SMAR-STOM & 15SE-U1	PEDR				0.836	
BERL-SMIG & 15SE-U1	SMIG	0.833	0.828			
BERL-SMIG & CGRA-U1	SMIG		0.827			
SANT-NEJA & ACAJ-ATEO	SANT	0.835				
	NCUS	0.823	0.821	0.833	0.821	0.830
SMAR-STOM & ACAJ-ATEO	STOM	0.799	0.797	0.810	0.797	0.806
	PEDR	0.783	0.781	0.794	0.782	0.791
SMAR-STOM & SRAF-SMAR	PEDR			0.841		0.839
SMAR-STOM & NEJA-OPIC						0.839

SMAR-STOM & AHUA-SANA	PEDR	0.837	0.822		0.833	0.837
NCUS-ATEO & SANT-ATEO	NCUS		0.828		0.822	
SMAR-STOM & AHUA-SONS	PEDR	0.838	0.823	0.837	0.834	0.835
SMAR-STOM & SANT-NEJA		V.C.	V.C.	V.C.	V.C.	V.C.
SMAR-STOM & CGRA-NEJA	PEDR		0.829	0.840		0.838
SMAR-STOM & ACAJ-SONS	PEDR			0.841	0.836	0.839
SMAR STOM & SONS ATEO	STOM	0.813	0.806	0.821	0.812	0.817
SMAR-STOM & SONS-ATEO	PEDR	0.798	0.791	0.806	0.797	0.802
SMAR-STOM & 15SE-SMAR	STOM			0.841		
SRAF-TECO & 15SE-SMIG	TECO	0.813	0.810	0.837		0.830
	OZAT	0.827	0.824			
	NCUS			0.840		
SMAR-STOM & SANT-ATEO	STOM			0.816		
	PEDR			0.801		
SRAF-TECO & BERL-SMIG	SMIG	0.726*	0.722*	0.770*	0.744*	0.763*
	TECO	0.661*	0.657*	0.711*	0.682*	0.703*
	OZAT	0.679*	0.675*	0.728*	0.700*	0.720*
	SMIG	0.807	0.805	0.830	0.819	0.826
TEOCOLAT & DENE-SMIG	OZAT	0.788	0.786	0.811	0.800	0.807

Se observa lo siguiente:

- a) Los nodos afectados (de mayor a menor) por bajo voltaje son: PEDR, SMIG, STOM, OZAT, TECO, NCUS y SANT.
- b) La contingencia que más problemas provocan es las que tiene asociada el disparo de la línea SMAR-STOM.
- c) El escenario que presenta los peores perfiles de voltaje corresponde a la importación de 40 MW desde Guatemala.
- d) Se comprueba que una vez determinado cuál escenario de transferencia provoca los peores resultados para contingencias N-1, el escenario de transferencia que provoca los peores resultados para contingencias N-2 es el mismo.

9.3. Selección de contingencias críticas

9.3.1. Demanda máxima

La metodología para el presente análisis, consiste en analizar las curvas V-Q de los nodos más afectados por abatimiento del voltaje cuando ocurre una contingencia N-1.De los análisis precedentes, los nodos que aparecieron con problemas de violación del límite inferior de la banda de voltaje de operación de emergencia son los siguientes:

Cuadro 10 – Lista de contingencias N-1 críticas y nodos afectados en demanda máxima.

Nodo 115 kV	Causa
San Miguel	Disparo de línea BERL-SMIG
Tecoluca y Ozatlán	Disparo de línea SRAF-TECO
Santo Tomás y Pedregal	Disparo de línea SMAR-STOM

El cuadro 11 muestra el margen de potencia reactiva por contingencia y por bus analizado; los nodos débiles son aquellos que indican los menores márgenes de reserva. El cuadro 12 indica los voltajes resultantes para cada escenario de intercambio con contingencias N-2.

CASO:			BUSES		
MX_GE56.CNV	TECO-115	OZAT-115	SMIG-115	STOM-115	PEDR-115
BASE	181	152	188	225	153
BERL-SMIG	162	121	122	213	148
SRAF-TECO	48	69	141	220	151
SMAR-STOM	180	152	188	113	80

Cuadro 11 - Margen de potencia reactiva para contingencias N-1 en demanda máxima

Cuadro 12 - Resultados del análisis de contingencias N-2 en demanda máxima.

CASO:			ΤΟΤΑΙ			
GUAT => ELSA 56 MW	TECO-115	OZAT-115	SMIG-115	STOM-115	PEDR-115	IUIAL
BERL-SMIG & 15SE-SMIG	102	24	-2	174	119	417
BERL-SMIG & 15SE-U1	148	119	121	188	133	709
BERL-SMIG & CGRA-U1	143	118	122	181	126	690
NCUS-ATEO & SRAF-TECO	46	67	133	185	124	555
NCUS-STOM & SANT-NEJA	175	149	182	212	138	856
NEJA-SMAR & SRAF-TECO	47	68	137	217	147	616
SANT-NEJA & ACAJ-ATEO	167	144	175	195	138	819
SMAR-STOM & ACAJ-ATEO	167	144	175	104	72	662
SMAR-STOM & SANT-NEJA	164	146	175	34	26	545
SMAR-STOM & SONS-ATEO	170	147	179	104	72	672
SMIG-OZAT & BERL-SMIG	145	84	81	213	148	671
SRAF-TECO & 15SE-SMIG	28	37	62	210	147	484
SRAF-TECO & 15SE-U1	43	63	126	184	133	549
SRAF-TECO & 5NOV-SRAF	47	68	138	214	149	616
SRAF-TECO & ACAJ-ATEO	47	68	135	201	139	590
SRAF-TECO & AHUA-SANA	47	68	136	203	139	593
SRAF-TECO & BERL-SMIG	17	24	48	194	141	424
SRAF-TECO & BERL-U3	47	65	132	198	140	582
SRAF-TECO & SOYA-NEJA	47	68	137	211	145	608
TECO-OZAT & 15SE-SMIG	153	48	77	217	150	645
TECO-OZAT & BERL-SMIG	150	38	65	209	149	611

Del cuadro precedente, se presenta el mismo listado de contingencias ordenados por el total que resulta de sumar el margen de reactivos de los nodos mostrados; esto dará una indicación de cuáles son las peores contingencias, ver cuadro 13.

No.	CONTINGENCIA	TOTAL MVARS	No.	CONTINGENCIA	TOTAL MVARS
1	BERL-SMIG & 15SE-SMIG	417	11	TECO-OZAT & BERL-SMIG	611
2	SRAF-TECO & BERL-SMIG	424	12	NEJA-SMAR & SRAF-TECO	616
3	SRAF-TECO & 15SE-SMIG	484	13	SRAF-TECO & 5NOV-SRAF	616
4	SMAR-STOM & SANT-NEJA	545	14	TECO-OZAT & 15SE-SMIG	645
5	SRAF-TECO & 15SE-U1	549	15	SMAR-STOM & ACAJ-ATEO	662
6	NCUS-ATEO & SRAF-TECO	555	16	SMIG-OZAT & BERL-SMIG	671
7	SRAF-TECO & BERL-U3	582	17	SMAR-STOM & SONS-ATEO	672
8	SRAF-TECO & ACAJ-ATEO	590	18	BERL-SMIG & CGRA-U1	690
9	SRAF-TECO & AHUA-SANA	593	19	BERL-SMIG & 15SE-U1	709
10	SRAF-TECO & SOYA-NEJA	608	20	SANT-NEJA & ACAJ-ATEO	819
			21	NCUS-STOM & SANT-NEJA	856

<u> </u>												
Cuadra	10	Linto	40.	aantina	onoioo	orítiona	ordonodoo	nor	morgon	totol	40	roootivoo
Guadro	10 -	LISIA	Je (CONTINU	encias	CHILCAS	oruenauas	DOL	maruen	lola	ue	reactivos.

Análisis:

- Los nodos más débiles son Tecoluca y Ozatlán, seguido muy de cerca por San Miguel y El Pedregal; y el nodo crítico en este escenario de demanda es Tecoluca ante disparo de SRAF-TECO.
- La contingencia que presenta menos reserva de reactivos para el control del voltaje corresponde al disparo de la línea San Rafael Cedros- Tecoluca, dejando a Tecoluca con un margen de reserva de 48 Mvars, seguido por Ozatlán con un margen de 69 Mvars aproximadamente.
- La peor contingencia que puede ocurrir después de ocurrir la peor contingencia listadas en la Tabla son las siguientes:

CASO	PEORES CONTINGENCIAS N-1	SIGUIENTE PEOR CONTINGENCIA N- 2 CON COLAPSO.	ID	SIGUIENTE PEOR CONTINGENCIA N-2 SIN C.V.	
1	BERL-SMIG	15SE-SMIG	1	SMIG-OZAT	16
2	BERL-SMIG	SRAF-TECO	2	SMIG-OZAT	16
3	BERL-SMIG	TECO-OZAT	11	SMIG-OZAT	16
4	SMAR-STOM	SANT-NEJA	4	ACAJ-ATEO	15
5	SRAF-TECO	BERL-SMIG	2	15SE-U1	5
6	SRAF-TECO	15SE-SMIG	3	NCUS-ATEO	6

Cuadro 14 – Lista de contingencias críticas en demanda máxima.

	BUS	MARGEN DI	E POTENCIA	MARGEN	CUMPLIMIENTO	
CASO	VOLTAJE	N-0 CASO BASE	N-1 CARGA 100%	N-1 CARGA +5%	REQUERIDO (MVAR)	DE CRITERIO?
DEDI SMIC	SMIG-115 KV	188	122	115	7	Sí
DERL-SMIG	OZAT-115 KV	152	121	115	6	Sí
SPAE TECO	TECO-115 KV	181	48	45	3	Sí
SKAF-TECU	OZAT-115KV	152	69	66	3	Sí
SMAR-STOM	STOM-115 KV	225	113	104	9	Si
	PEDR-115 KV	153	80	76	4	Sí

Cuadro 15 – Margen de potencia reactiva requerida en demanda máxima.

9.3.2. <u>Demanda media</u>

De los análisis precedentes, los nodos que aparecieron con problemas de violación del límite inferior de la banda de voltaje de operación de emergencia son los siguientes:

Nodo 115 kV	Causa
San Miguel	Disparo de línea BERL-SMIG
Tecoluca y Ozatlán	Disparo de línea SRAF-TECO
Nuevo Cuscatlán, Santo Tomás y	Disparo de línea SMAR-STOM
Pedregal	Disparo de línea NCUS-ATEO
San Antonio Abad	Disparo de línea SANT-NEJA

El cuadro 17 muestra el margen de potencia reactiva por contingencia y por bus analizado; los nodos débiles son aquellos que indican los menores márgenes de reserva. El cuadro 18 indica los voltajes resultantes para cada escenario de intercambio con contingencias N-2.

CASO:	BUSES										
MX_GE56.CNV	TECO-115	OZAT-115	SMIG-115	SANT-115	STOM-115	PEDR-115					
BASE	161	141	172	217	200	132					
BERL-SMIG	145	116	120	207	190	128					
SRAF-TECO	51	74	144	215	198	132					
SMAR-STOM	156	138	167	192	97	69					
NCUS-ATEO	147	130	158	196	155	108					
SANT-NEJA	157	139	168	118	183	127					

Cuadro 17 - Margen de potencia reactiva para contingencias N-1 en demanda media.

CASO:		τοτλι					
GUAT => ELSA 56 MW	TECO-115	OZAT-115	SMIG-115	SANT-115	STOM-115	PEDR-115	IUIAL
BERL-SMIG & 15SE-SMIG	97	40	13	166	154	109	579
SMAR-STOM & CGRA-U1	137	122	149	166	84	62	720
SMAR-STOM & ACAJ-U5	137	123	145	159	82	61	707
SMAR-STOM & ATEO-GM	138	125	150	160	82	61	716
SMAR-STOM & 15SE-U1	136	120	145	167	84	62	714
BERL-SMIG & 15SE-U1	124	100	104	174	162	111	775
BERL-SMIG & CGRA-U1	126	102	106	175	162	111	782
SANT-NEJA & ACAJ-ATEO	144	129	155	97	155	112	792
SMAR-STOM & ACAJ-ATEO	143	129	155	167	84	61	739
SMAR-STOM & SRAF-SMAR	149	135	165	184	95	68	796
SMAR-STOM & NEJA-OPIC	148	133	160	181	97	68	787
SMAR-STOM & AHUA-SANA	143	128	155	169	91	67	753
NCUS-ATEO & SANT-ATEO	117	106	129	141	122	84	699
SMAR-STOM & AHUA-SONS	140	127	153	150	80	61	711
SMAR-STOM & SANT-NEJA	123	115	135	18	7	3	401
SMAR-STOM & CGRA-NEJA	152	135	164	183	94	68	796
SMAR-STOM & ACAJ-SONS	155	137	166	188	96	69	811
SMAR-STOM & SONS-ATEO	143	129	155	164	81	59	731
SMAR-STOM & 15SE-SMAR	152	136	164	178	93	68	791
SRAF-TECO & 15SE-SMIG	34	46	77	208	191	129	685
SMAR-STOM & SANT-ATEO	155	137	167	188	56	42	745
SRAF-TECO & BERL-SMIG	27	37	67	199	183	126	639
TECO-OZAT & BERL-SMIG	137	53	86	211	194	130	811

Del cuadro precedente, se presenta el mismo listado de contingencias ordenados por el total que resulta de sumar el margen de reactivos de los nodos mostrados; esto dará una indicación de cuáles son las peores contingencias, ver cuadro 19.

Cuadro 19 - Lista de contingencias críticas ordenadas por margen total de reactivos.

-					
No.	CONTINGENCIA	TOTAL MVARS	No.	CONTINGENCIA	TOTAL MVARS
1	SMAR-STOM & SANT-NEJA	401	12	SMAR-STOM & ACAJ-ATEO	739
2	BERL-SMIG & 15SE-SMIG	579	13	SMAR-STOM & SANT-ATEO	745
3	SRAF-TECO & BERL-SMIG	639	14	SMAR-STOM & AHUA-SANA	753
4	SRAF-TECO & 15SE-SMIG	685	15	BERL-SMIG & 15SE-U1	775
5	NCUS-ATEO & SANT-ATEO	699	16	BERL-SMIG & CGRA-U1	782
6	SMAR-STOM & ACAJ-U5	707	17	SMAR-STOM & NEJA-OPIC	787
7	SMAR-STOM & AHUA-SONS	711	18	SMAR-STOM & 15SE-SMAR	791
8	SMAR-STOM & 15SE-U1	714	19	SANT-NEJA & ACAJ-ATEO	792
9	SMAR-STOM & ATEO-GM	716	20	SMAR-STOM & SRAF-SMAR	796
10	SMAR-STOM & CGRA-U1	720	21	SMAR-STOM & CGRA-NEJA	796
11	SMAR-STOM & SONS-ATEO	731	22	SMAR-STOM & ACAJ-SONS	811
			23	TECO-OZAT & BERL-SMIG	811

Análisis:

- Los nodos más débiles son Tecoluca y Ozatlán, seguido por San Miguel y El Pedregal; el nodo crítico en este escenario de demanda es Tecoluca ante disparo de SRAF-TECO.
- La contingencia que presenta menos reserva de reactivos para el control del voltaje corresponde al disparo de la línea SRAF-TECO, dejando a Tecoluca con un margen de reserva de 51 Mvars, seguido por Ozatlán con un margen de 74 Mvars aprox.
- La peor contingencia que puede ocurrir después de ocurrir la peor contingencia listadas son las siguientes:

CASO	PEORES CONTINGENCIAS N-1	SIGUIENTE PEOR CONTINGENCIA N-2 CON COLAPSO.	ID	SIGUIENTE PEOR CONTINGENCIA N-2 SIN C.V.	ID
1	SMAR-STOM	SANT-NEJA	1	ACAJ-U5	16
2	BERL-SMIG	15SE-SMIG	2	15SE-U1	16
3	SRAF-TECO	BERL-SMIG	3	15SE-SMIG	4
4	NCUS-ATEO			SANT-ATEO	5
5	SANT-NEJA	SMAR-STOM	1	ACAJ-ATEO	19

Cuadro 20 – Lista	do	contingenciae	críticae	on domanda modia
Guadro 20 – Lista	ue	contingencias	Cinicas	en demanda media

Cuadro 21 - Margen de potencia reactiva requerida en demanda máxima

	BUS	MARGEN D	E POTENCIA	MARGEN	CUMPLIMIENTO		
CASO	VOLTAJE	N-0 CASO BASE	N-1 CARGA 100%	N-1 CARGA +5%	REQUERIDO	DE CRITERIO?	
DEDI SMIC	SMIG-115 KV	172	120	109	11	Sí	
BERL-SMIG	OZAT-115 KV	141	116	105	11	Sí	
	TECO-115 KV	161	51	49	2	Sí	
SKAP-TECO	OZAT-115KV	141	74	71	3	Sí	
SMAD STOM	STOM-115 KV	200	97	84	13	Si	
SMAK-STOM	PEDR-115 KV	132	69	63	6	Sí	
NUCS-ATEO	PEDR-115 KV	132	108	95	13	Sí	
SANT-NEJA	SANT-115 KV	217	118	102	16	Sí	

9.4. Análisis de las curvas P-V

a		
Cuadro 22 –	- Parametrización de	e las curvas PV

SUB Punto de Colapso		Colapso	Punto o	Punto de Recuperación			Disparo para el presente escenario		Punto de disparo en condición N-1				Punto de disparo en condición N-2			
Caso	SUB	V ^C _{N-1}	P ^C	V ^R _{N-1}	V ^R _{N-2}	P ^R	Pactual	P _{shed}	\mathbf{P}^{F}	V ^F _{N-1}	Punto N-1	%L _F	P ^S	V ^S _{N-1}	Punto N-2	%L _F
	PEDR	0.869	34	0.902	0.902	32	27		32.3	0.902	15	0.9%	32	0.902	17	0.0%
BERL-SMIG &	TECO	0.9	18.8	0.934	0.948	16	14		17.9	0.925	18	10.4%	17	0.942	15	5.9%
SMIG-OZAT	OZAT	0.856	21	0.9	0.931	19	17		20.0	0.895	16	4.8%	21	0.909	20	9.5%
	SMIG	0.839	85	0.926	0.904	64	69	5	80.8	0.873	17	20.7%	73.5	0.901	13	12.9%
SWAD STOM 8	NCUS	0.801	94	0.929	0.909	66	76	7	89.3	0.866	15	26.1%	79	0.899	4	16.5%
ACAJ-ATEO	STOM	0.796	60	0.925	0.9	41	49	8	57.0	0.845	15	28.1%	48	0.897	10	14.6%
	PEDR	0.78	30	0.92	0.91	19	27	7	28.5	0.831	15	33.3%	22	0.896	10	13.6%
	SMIG	0.858	92	0.953	0.902	71	69		87.4	0.91	19	18.8%	79.2	0.938	17	10.4%
15SE-U1	OZAT	0.84	21	0.942	0.902	15	17	2	20.0	0.888	17	24.8%	19	0.9	16	21.1%
	TECO	0.825	18	0.918	0.9	12	14	2	17.1	0.859	19	29.8%	16	0.893	18	25.0%
	SMIG	0.858	92	0.92	0.902	85	69		87.4	0.91	19	2.7%	89	0.899	16	4.5%
NCUS-ATEO	TECO	0.825	17	0.91	0.905	14	14		16.2	0.888	15	13.3%	15	0.898	13	6.7%
	OZAT	0.84	21	0.913	0.906	18	17		20.0	0.888	17	9.8%	19	0.9	15	5.3%
SWAD STOM 8	NCUS	0.801	94	0.909	0.900	76	76		89.3	0.869	15	14.9%	79	0.899	14	3.8%
ACAJ-U5	STOM	0.776	60	0.91	0.905	44	49	5	57.0	0.84	15	22.8%	48	0.897	15	8.3%
	PEDR	0.78	30	0.906	0.91	20	27	6	28.5	0.824	16	29.8%	23	0.896	15	13.0%
	TECO	0.866	19	0.92	0.901	17	14		18.1	0.911	18	5.8%	17.2	0.925	19	1.2%
15SF-U1	OZAT	0.856	21	0.915	0.901	18	17		20.0	0.895	16	9.8%	18.7	0.909	16	3.7%
	SMIG	0.839	85	0.917	0.902	68	69	1	80.8	0.873	17	15.8%	76	0.892	17	10.5%
	SMIG	0.858	91	0.956	0.908	69	69		86.5	0.914	18	20.2%	67	0.959	8	-3.0%
15SE-SMIG	OZAT	0.84	21	0.946	0.902	15	17	2	20.0	0.888	17	24.8%	19	0.9	8	21.1%
	TECO	0.825	17	0.941	0.9	12	14	2	16.2	0.881	16	25.7%	15	0.898	7	20.0%
	STOM	0.828	65	0.919	0.905	54	49		61.8	0.891	16	12.6%	60	0.898	12	10.0%
SANT-ATEO &	PEDR	0.812	32	0.915	0.902	26	27	1	30.4	0.883	15	14.5%	28	0.899	11	7.1%
O/MIT / TEO	NCUS	0.802	95	0.915	0.903	76	76		90.3	0.872	16	15.8%	83	0.897	12	8.4%
	STOM	0.852	69	0.926	0.903	60	49		65.6	0.907	18	8.5%	59.1	0.93	13	-1.5%
SANT-NEJA &	NCUS	0.856	101	0.936	0.904	83	76		96.0	0.9	17	13.5%	84.5	0.932	10	1.8%
ACAJ-ATEO	PEDR	0.835	34	0.925	0.904	28	27		32.3	0.892	18	13.3%	29.1	0.917	13	3.8%
	SANT	0.819	139	0.94	0.905	104	108	4	132.1	0.879	16	21.2%	126	0.898	9	17.5%

9.5. Determinación de parámetros del EDCBV

Un resumen analítico de la banda de operación de disparo se muestra en los Cuadros 23 y 24, en los cuales, se identificaron dos grupos de cargas:

V ^F _{N-1}	SMIG	OZAT	TECO	NCUS	STOM	PEDR	SANT
BERL-SMIG & 15SE-U1	0.873	0.895	0.911				
BERL-SMIG & SMIG-OZAT	0.873	0.895	0.925				
SRAF-TECO & 15SE-SMIG	0.914	0.888	0.881				
SRAF-TECO & 15SE-U1	0.91	0.888	0.859				
SRAF-TECO & NCUS-ATEO	0.91	0.888	0.888				
NCUS-ATEO & SANT-ATEO				0.872	0.891	0.883	
SANT-NEJA & ACAJ-ATEO				0.9	0.907	0.892	0.879
SMAR-STOM & ACAJ-ATEO				0.866	0.845	0.831	
SMAR-STOM & ACAJ-U5				0.869	0.84	0.824	

Cuadro 23 - Límite inferior de voltaje de la banda de disparo

Cuadro 24 – Límite superior de voltaje de la banda de disparo

V ^S _{N-1}	SMIG	OZAT	TECO	NCUS	STOM	PEDR	SANT
BERL-SMIG & 15SE-U1	0.892	0.909	0.925				
BERL-SMIG & SMIG-OZAT	0.901	0.909	0.942				
SRAF-TECO & 15SE-SMIG	0.959	0.9	0.898				
SRAF-TECO & 15SE-U1	0.938	0.9	0.893				
SRAF-TECO & NCUS-ATEO	0.899	0.9	0.898				
NCUS-ATEO & SANT-ATEO				0.897	0.898	0.899	
SANT-NEJA & ACAJ-ATEO				0.932	0.93	0.917	0.898
SMAR-STOM & ACAJ-ATEO				0.899	0.897	0.896	
SMAR-STOM & ACAJ-U5				0.899	0.897	0.896	

Se ajusta el disparo de las etapas en cada nodo disparando carga para el peor de los casos; es decir, los porcentajes de carga asignados corresponde al peor de los casos. Los voltajes $V^S y V^F$ se seleccionan talque $V^F < V^S & V^S <= 0.9$ (la idea es la de tratar de mantenerse por debajo de la banda de voltaje de emergencia cuando sea posible), y el valor seleccionado de V^F ó V^S , que cubra o proteja la mayoría de los casos de contingencias. La coordinación del EDCBV será posible solamente con las pruebas de efectividad mediante simulaciones dinámicas.

Cuadro 25 – Parámetros del EDCBV de las primeras dos etapas

EDBV		MEDIANA		RAPIDA				
	V ^S _{N-1}	DELAY	%S ₂	V ^F _{N-1}	DELAY	%S ₁		
SANT	0.898	3	17.5	0.879	1.5	21.2		
NCUS	0.899	3	16.5	0.872	1.5	26.1		
SMIG	0.901	3	12.9	0.873	1.5	20.7		
TECO	0.898	3	25.0	0.888	1.5	29.8		
OZAT	0.909	3	21.1	0.888	1.5	24.8		
STOM	0.897	3	14.6	0.845	1.5	28.1		
PEDR	0.899	3	13.6	0.831	1.5	33.3		

9.6. Determinación del mínimo tiempo de retardo

De las gráficas obtenidas mediante simulaciones dinámicas sin EDCBV, se estima que la duración máxima de un disturbio es de 1.5 segundos; donde el transitorio mas larga corresponde a una falla trifásica en la línea SRAF-TECO con previa apertura de la línea NCUS-ATEO.

9.7. Evaluación dinámica y verificación de parámetros

9.7.1. Contingencias simples

				-	-		•			
EDBV	SUB	Disparo esperado	V_{ini}	S _{ini}	Etapa	V_{fin}	\mathbf{S}_{fin}	ΔS	AJUSTE	
	SMIG	0			х	0.903	69.7			
BERL-SMIG	OZAT	0			х	0.921	17.4			
	TECO	0			х	0.941	15.2			
	TECO	0			х	0.904	14.7			
SRAF-TECO	OZAT	0			х	0.919	17.4			
	SMIG	0			х	0.942	74.8			
	SANT	0			х	0.912	120			
	PEDR	0			х	0.926	28.1			
SANT-NEJA	STOM	0			х	0.939	56.3			
	NCUS	0			х	0.927	85.9			
	PEDR	7	0.863	26.1	1	0.892	20.5	-5.6	%Ls	25%
SMAR-STOM	STOM	8	0.878	52.5	1	0.901	43.4	-9.1	%Ls	20%
	NCUS	7	0.902	83.5	1	0.912	71.1	-12.4	V^{s}_{N-1}	0.906
	PEDR	1	0.904	27.3	х	0.909	27.4			
NCUS-ATEO	NCUS	0	0.896	83.4	1	0.908	70.8	-12.6		
	STOM	0	0.916	54.9	х	0.921	55.2			

Cuadro 26 - Evaluación dinámica para contingencias simples.

9.7.2. <u>Contingencias dobles</u>

Cuadro 27-	Evaluación	dinámica	para	contingencias dobles.
00000	- alaaololl	annannoa	puiu	oonangonolao aobioo.

EDBV	SUB	Disparo esperado	V _{ini}	S _{ini}	Etapa	V_{fin}	S _{fin}	ΔS	AJU	STE
	SMIG	1	0.894	68.8	1	0.907	61.2	-7.6		
BERL-SMIG & 15SE-U1	OZAT	0	0.910	17.1	х	0.913	17.4			
	TECO	0	0.935	15.2	х	0.937	15.2			
	OZAT	0	0.939	18.1	х	0.937	18			
BERL-SMIG & SMIG-OZAT	SMIG	5	0.888	67.9	1	0.903	61.2	-6.7		
	TECO	0	0.954	15.5	х	0.952	15.5			
	TECO	2	0.874	13.9	1,2	0.898	6.6	-7.3		
SRAF-TECO & 15SE-SMIG	OZAT	2	0.886	16.6	1	0.904	13.5	-3.1		
	SMIG	0	0.909	70.5	х	0.92	71.3			
	TECO	2	0.893	14.4	1	0.913	11.1	-3.3		
SRAF-TECO & 15SE-U1	OZAT	2	0.905	17.1	1	0.919	13.9	-3.2		
	SMIG	0	0.934	73.3	х	0.935	73.7			

	TECO	0	0.904	14.4	x	0.903	14.3			
SRAF-TECO & NCUS-ATEO	OZAT	0	0.915	17.4	х	0.913	17.3			
	NCUS		0.899	83.6	1	0.911	70.4	-13.2		
	PEDR	1	0.899	26.9	1	0.903	20.5	-6.4		
NCUS-ATEO & SANT-ATEO	NCUS	0	0.879	82	1	0.9	70.1	-11.9		
	STOM	0	0.913	54.7	х	0.913	54.7			
	SANT	4	0.877	115	1	0.899	98.1	-16.9		
	PEDR	0	0.911	27.5	х	0.915	27.7			
SANT-NEJA & ACAJ-ATEO	STOM	0	0.924	55.6	х	0.93	55.7			
	NCUS	0	0.907	84	х	0.916	84.6			
	PEDR	7	0.860	26.1	1	0.867	20.1	-6		
SMAR-STOM & ACAJ-ATEO	STOM	8	0.874	51.9	1	0.895	42.9	-9		
	NCUS	7	0.896	83.2	1	0.909	70.7	-12.5		
	PEDR	6	0.835	25.3	1,3	0.891	19.1	-6.2	N.	0/1
SMAR-STOM & ACAJ-U5	STOM	5	0.848	50.7	1	0.896	29.7	-21	v _{N-1} = 0.889	%L _I = 25
	NCUS	0	0.867	81.2	1	0.906	70.7	-10.5		

9.7.3. <u>Contingencias con colapsos de voltaje</u>

Cuadro 28 – Evaluación dinámica para contingencias con colapso de voltaje.

EDBV	SUB	Disparo esperado	\mathbf{V}_{ini}	S _{ini}	Etapa	V_{fin}	$\mathbf{S}_{\mathrm{fin}}$	ΔS	AJU	STE
	SMIG	Ind	0.746	51.9	1,2,3	0.9	23.2	-28.7	%Ls	30%
BERL-SMIG & 15SE-SMIG	OZAT	Ind	0.811	14.5	1,2	0.919	9.5	-5		
	TECO	Ind	0.888	14.1	х	0.943	15.3			
	PEDR	Ind	<0.8	24.4	1,2,3	0.904	4.5	-19.9	V ^I _{N-1}	0.899
	STOM	Ind	<0.82	49.1	1,2	0.906	28.3	-20.8		
SIMAN-STOW & SANT-INEJA	NCUS	Ind	<0.84	79.6	2	0.912	63.1	-16.5		
	SANT	Ind	<0.86	113	2	0.919	95.7	-17.3		
	TECO	Ind	0.806	12.6	1,2	0.909	6.8	-5.8		
SRAF-TECO & BERL-SMIG	OZAT	Ind	0.815	14.5	1,2	0.911	9.4	-5.1		
	SMIG	Ind	0.844	62.5	1,2	0.921	42.1	-20.4		

10. <u>CONSIDERACIONES DE IMPLEMENTACION DEL EDCBV</u>

Los relevadores para el EDCBV miden el voltaje y todas las caídas de voltaje sin considerar la causa. Algunas de las técnicas que pueden ser usados para mejorar la habilidad de los relevadores de voltaje para discriminar la condición, de las que requieren corte de carga y de las que no, se indican a continuación⁶:

- □ Medir el voltaje de las tres fases o el voltaje de secuencia positiva.
- El relevador debe iniciar la secuencia de disparo solamente si la medición de voltaje está dentro de una ventana, debajo del nivel máximo, y arriba del nivel mínimo, para asegurar que la carga no se dispare por una pérdida accidental de señal o por un despeje de falla lento.

⁶ Mozina, Charles J., "Undervoltage Load Shedding"; Beckwith Electric Co., Protective Relay 2007, IEEE

□ Los relevadores a instalar deben tener un valor alto de "Reset Ratio". Esto es necesario para que solamente una pequeña recuperación en el nivel de voltaje sea requerida para detener la secuencia de corte de carga.

11. <u>CONCLUSIONES</u>

- □ El EDCBV es una alternativa de bajo costo para resolver los problemas de colapso de voltaje.
- □ El EDCBV resultante es el siguiente:

	MEDIANA				RAPIDA	LENTA			
EDBA	V ^S _{N-1}	DELAY	%Ls	V ^F _{N-1}	DELAY	%L _F	VI _{N-1}	DELAY	%Lı
SANT	0.898	3	17.5	0.879	1.5	21.2	0.898	5	15.0
NCUS	0.906	3	16.5	0.872	1.5	26.1	0.906	5	15.0
SMIG	0.901	3	12.9	0.873	1.5	30.0	0.895	5	25.0
TECO	0.898	3	25.0	0.888	1.5	29.8	0.898	5	15.0
OZAT	0.909	3	21.1	0.888	1.5	24.8	0.909	6	20.0
STOM	0.897	3	20.0	0.845	1.5	28.1	0.889	6	25.0
PEDR	0.899	3	25.0	0.831	1.5	33.3	0.899	5	25.0

Cuadro 29 – Esquema de Desconexión de Carga por Bajo Voltaje.

- El método de diseño del EDCBV seguido en el presente estudio se basó principalmente en herramientas de estado estable, como fue el análisis de las curvas PV; las correcciones adicionales por análisis dinámica fueron escasas, lo cual indica que fue un procedimiento directo y al mismo tiempo optimizado en sus resultados.
- □ Se recomienda una revisión de los parámetros del EDCBV para el año 2009.
- □ El EDCABV no debe interferir con el desempeño del EDCABF.
- □ Se recomienda mejorar el factor de potencia de aquellos retiros de carga con valores inferiores a 0.95.

12. <u>REFERENCIAS Y BIBLIOGRAFIA</u>

[1] Charles J. Mozina (Beckwith Electric Co., Inc.); UNDERVOLTAGE LOAD SHEDDING, IEEE, Protective Relay 2007.

[2] Eduardo A. Perez, Evaluación de la Estabilidad de Voltaje del Sistema Eléctrico Salvadoreño – Primer Semestre 2006"; Documento UT, Octubre 2005.

[3] Koessler, Rodolfo J, Power Technology Inc, "Voltage Stability Analysis of the MAPP System"; American Power Conference, 2000.

[4] Ladhini, Shamir S., "Under Voltaje Load Shedding for Voltaje Stability: Overview of Concepts and Principles", Power System IEEE

[5] Juan José Orellana, "Modelos de cargas para simulaciones dinámica"; Documento UT, Julio 2007.

[6] Sandra Cañas, "Determinación experimental de modelos de carga para simulaciones dinámicas"; Tesis UCA José Simeón Cañas, Mayo 2008.

[7] Undervoltage Load Shedding Task Force, WSCC, "Undervoltage Load Shedding Guidelines", Julio1999.

[8] Western System Coordinating Council, "Voltage Stability Criteria, Undervoltage Load Shedding Strategy, and Reactive Power Reserve Monitoring Methodoly", IEEE, 1999.

[9] Mauricio Contreras, "Estudio de Evaluación de las Restricciones de Transmisión 2008", Documento UT, Marzo 2008.

[10] WSCC, "Summary of WSCC Voltage Stability Criteria, Undervoltage Load Sheedding Strategy and reactive Poer Reserve Monitorin Methodoloy, Power Engineering Society Summer Meeting, Julio 1999."

[11] Xiaokang Xu "Assessment of Voltaje Stability and Real and Reactive Margins Using Advanced Analytical Tools", Documento de Power Technologies Inc (PTI), 2002.

[12] Sarmiento, H.G., "Revisiting Undervoltage Load Shedding Schemes: A Step by Step Approach", IEEE, 2008.

[13] Taylor, Carson W., "Concepts of Undervoltage Load Shedding for Voltaje Stability"; IEEE Power System relaying, 1991.

